Networkx - Is There A Way To Scale A Position Of Nodes In A Graph According To Node Weight?
Solution 1:
By default, networkx
uses the Fruchterman-Reingold (FR) algorithm to determine the node layout. The FR algorithm can be modified to take node sizes into account; however, the implementation in networkx
does not do this. Below is my implementation of FR that takes node sizes into account.
#!/usr/bin/env pythonimport numpy as np
import matplotlib.pyplot as plt
BASE_NODE_SIZE = 1e-2
BASE_EDGE_WIDTH = 1e-2defget_fruchterman_reingold_layout(edge_list,
k = None,
scale = None,
origin = None,
initial_temperature = 1.,
total_iterations = 50,
node_size = None,
node_positions = None,
fixed_nodes = None,
*args, **kwargs
):
"""
Arguments:
----------
edge_list : m-long iterable of 2-tuples or equivalent (such as (m, 2) ndarray)
List of edges. Each tuple corresponds to an edge defined by (source, target).
origin : (float x, float y) tuple or None (default None -> (0, 0))
The lower left hand corner of the bounding box specifying the extent of the layout.
If None is given, the origin is placed at (0, 0).
scale : (float delta x, float delta y) or None (default None -> (1, 1))
The width and height of the bounding box specifying the extent of the layout.
If None is given, the scale is set to (1, 1).
k : float or None (default None)
Expected mean edge length. If None, initialized to the sqrt(area / total nodes).
total_iterations : int (default 50)
Number of iterations.
initial_temperature: float (default 1.)
Temperature controls the maximum node displacement on each iteration.
Temperature is decreased on each iteration to eventually force the algorithm
into a particular solution. The size of the initial temperature determines how
quickly that happens. Values should be much smaller than the values of `scale`.
node_size : scalar or (n,) or dict key : float (default 0.)
Size (radius) of nodes.
Providing the correct node size minimises the overlap of nodes in the graph,
which can otherwise occur if there are many nodes, or if the nodes differ considerably in size.
NOTE: Value is rescaled by BASE_NODE_SIZE (1e-2) to give comparable results to layout routines in igraph and networkx.
node_positions : dict key : (float, float) or None (default None)
Mapping of nodes to their (initial) x,y positions. If None are given,
nodes are initially placed randomly within the bounding box defined by `origin`
and `scale`.
fixed_nodes : list of nodes
Nodes to keep fixed at their initial positions.
Returns:
--------
node_positions : dict key : (float, float)
Mapping of nodes to (x,y) positions
"""# This is just a wrapper around `_fruchterman_reingold` (which implements (the loop body of) the algorithm proper).# This wrapper handles the initialization of variables to their defaults (if not explicitely provided),# and checks inputs for self-consistency.if origin isNone:
if node_positions:
minima = np.min(list(node_positions.values()), axis=0)
origin = np.min(np.stack([minima, np.zeros_like(minima)], axis=0), axis=0)
else:
origin = np.zeros((2))
else:
# ensure that it is an array
origin = np.array(origin)
if scale isNone:
if node_positions:
delta = np.array(list(node_positions.values())) - origin[np.newaxis, :]
maxima = np.max(delta, axis=0)
scale = np.max(np.stack([maxima, np.ones_like(maxima)], axis=0), axis=0)
else:
scale = np.ones((2))
else:
# ensure that it is an array
scale = np.array(scale)
assertlen(origin) == len(scale), \
"Arguments `origin` (d={}) and `scale` (d={}) need to have the same number of dimensions!".format(len(origin), len(scale))
dimensionality = len(origin)
unique_nodes = _get_unique_nodes(edge_list)
total_nodes = len(unique_nodes)
if node_positions isNone: # assign random starting positions to all nodes
node_positions_as_array = np.random.rand(total_nodes, dimensionality) * scale + origin
else:
# 1) check input dimensionality
dimensionality_node_positions = np.array(list(node_positions.values())).shape[1]
assert dimensionality_node_positions == dimensionality, \
"The dimensionality of values of `node_positions` (d={}) must match the dimensionality of `origin`/ `scale` (d={})!".format(dimensionality_node_positions, dimensionality)
is_valid = _is_within_bbox(list(node_positions.values()), origin=origin, scale=scale)
ifnot np.all(is_valid):
error_message = "Some given node positions are not within the data range specified by `origin` and `scale`!"
error_message += "\nOrigin : {}, {}".format(*origin)
error_message += "\nScale : {}, {}".format(*scale)
for ii, (node, position) inenumerate(node_positions.items()):
ifnot is_valid[ii]:
error_message += "\n{} : {}".format(node, position)
raise ValueError(error_message)
# 2) handle discrepancies in nodes listed in node_positions and nodes extracted from edge_listifset(node_positions.keys()) == set(unique_nodes):
# all starting positions are given;# no superfluous nodes in node_positions;# nothing left to dopasselse:
# some node positions are provided, but not allfor node in unique_nodes:
ifnot (node in node_positions):
warnings.warn("Position of node {} not provided. Initializing to random position within frame.".format(node))
node_positions[node] = np.random.rand(2) * scale + origin
# unconnected_nodes = []for node in node_positions:
ifnot (node in unique_nodes):
# unconnected_nodes.append(node)
warnings.warn("Node {} appears to be unconnected. No position is computed for this node.".format(node))
del node_positions[node]
node_positions_as_array = np.array(list(node_positions.values()))
if node_size isNone:
node_size = np.zeros((total_nodes))
elifisinstance(node_size, (int, float)):
node_size = BASE_NODE_SIZE * node_size * np.ones((total_nodes))
elifisinstance(node_size, dict):
node_size = np.array([BASE_NODE_SIZE * node_size[node] if node in node_size else0.for node in unique_nodes])
if fixed_nodes isNone:
is_mobile = np.ones((len(unique_nodes)), dtype=np.bool)
else:
is_mobile = np.array([Falseif node in fixed_nodes elseTruefor node in unique_nodes], dtype=np.bool)
adjacency = _edge_list_to_adjacency_matrix(edge_list)
# Forces in FR are symmetric.# Hence we need to ensure that the adjacency matrix is also symmetric.
adjacency = adjacency + adjacency.transpose()
if k isNone:
area = np.product(scale)
k = np.sqrt(area / float(total_nodes))
temperatures = _get_temperature_decay(initial_temperature, total_iterations)
# --------------------------------------------------------------------------------# --------------------------------------------------------------------------------# main loopfor ii, temperature inenumerate(temperatures):
node_positions_as_array[is_mobile] = _fruchterman_reingold(adjacency, node_positions_as_array,
origin = origin,
scale = scale,
temperature = temperature,
k = k,
node_radii = node_size,
)[is_mobile]
node_positions_as_array = _rescale_to_frame(node_positions_as_array, origin, scale)
# --------------------------------------------------------------------------------# --------------------------------------------------------------------------------# format output
node_positions = dict(zip(unique_nodes, node_positions_as_array))
return node_positions
def_is_within_bbox(points, origin, scale):
return np.all((points >= origin) * (points <= origin + scale), axis=1)
def_get_temperature_decay(initial_temperature, total_iterations, mode='quadratic', eps=1e-9):
x = np.linspace(0., 1., total_iterations)
if mode == 'quadratic':
y = (x - 1.)**2 + eps
elif mode == 'linear':
y = (1. - x) + eps
else:
raise ValueError("Argument `mode` one of: 'linear', 'quadratic'.")
return initial_temperature * y
def_fruchterman_reingold(adjacency, node_positions, origin, scale, temperature, k, node_radii):
"""
Inner loop of Fruchterman-Reingold layout algorithm.
"""# compute distances and unit vectors between nodes
delta = node_positions[None, :, ...] - node_positions[:, None, ...]
distance = np.linalg.norm(delta, axis=-1)
# assert np.sum(distance==0) - np.trace(distance==0) > 0, "No two node positions can be the same!"# alternatively: (hack adapted from igraph)if np.sum(distance==0) - np.trace(distance==0) > 0: # i.e. if off-diagonal entries in distance are zero
warning.warn("Some nodes have the same position; repulsion between the nodes is undefined.")
rand_delta = np.random.rand(*delta.shape) * 1e-9
is_zero = distance <= 0
delta[is_zero] = rand_delta[is_zeros]
distance = np.linalg.norm(delta, axis=-1)
# subtract node radii from distances to prevent nodes from overlapping
distance -= node_radii[None, :] + node_radii[:, None]
# prevent distances from becoming less than zero due to overlap of nodes
distance[distance <= 0.] = 1e-6# 1e-13 is numerical accuracy, and we will be taking the square shortlywith np.errstate(divide='ignore', invalid='ignore'):
direction = delta / distance[..., None] # i.e. the unit vector# calculate forces
repulsion = _get_fr_repulsion(distance, direction, k)
attraction = _get_fr_attraction(distance, direction, adjacency, k)
displacement = attraction + repulsion
# limit maximum displacement using temperature
displacement_length = np.linalg.norm(displacement, axis=-1)
displacement = displacement / displacement_length[:, None] * np.clip(displacement_length, None, temperature)[:, None]
node_positions = node_positions + displacement
return node_positions
def_get_fr_repulsion(distance, direction, k):
with np.errstate(divide='ignore', invalid='ignore'):
magnitude = k**2 / distance
vectors = direction * magnitude[..., None]
# Note that we cannot apply the usual strategy of summing the array# along either axis and subtracting the trace,# as the diagonal of `direction` is np.nan, and any sum or difference of# NaNs is just another NaN.# Also we do not want to ignore NaNs by using np.nansum, as then we would# potentially mask the existence of off-diagonal zero distances.
vectors = _set_diagonal(vectors, 0)
return np.sum(vectors, axis=0)
def_get_fr_attraction(distance, direction, adjacency, k):
magnitude = 1./k * distance**2 * adjacency
vectors = -direction * magnitude[..., None] # NB: the minus!
vectors = _set_diagonal(vectors, 0)
return np.sum(vectors, axis=0)
def_rescale_to_frame(node_positions, origin, scale):
node_positions = node_positions.copy() # force copy, as otherwise the `fixed_nodes` argument is effectively ignored
node_positions -= np.min(node_positions, axis=0)
node_positions /= np.max(node_positions, axis=0)
node_positions *= scale[None, ...]
node_positions += origin[None, ...]
return node_positions
def_set_diagonal(square_matrix, value=0):
n = len(square_matrix)
is_diagonal = np.diag(np.ones((n), dtype=np.bool))
square_matrix[is_diagonal] = value
return square_matrix
def_flatten(nested_list):
return [item for sublist in nested_list for item in sublist]
def_get_unique_nodes(edge_list):
"""
Using numpy.unique promotes nodes to numpy.float/numpy.int/numpy.str,
and breaks for nodes that have a more complicated type such as a tuple.
"""returnlist(set(_flatten(edge_list)))
def_edge_list_to_adjacency_matrix(edge_list, edge_weights=None):
sources = [s for (s, _) in edge_list]
targets = [t for (_, t) in edge_list]
if edge_weights:
weights = [edge_weights[edge] for edge in edge_list]
else:
weights = np.ones((len(edge_list)))
# map nodes to consecutive integers
nodes = sources + targets
unique = set(nodes)
indices = range(len(unique))
node_to_idx = dict(zip(unique, indices))
source_indices = [node_to_idx[source] for source in sources]
target_indices = [node_to_idx[target] for target in targets]
total_nodes = len(unique)
adjacency_matrix = np.zeros((total_nodes, total_nodes))
adjacency_matrix[source_indices, target_indices] = weights
return adjacency_matrix
if __name__ == '__main__':
import networkx as nx
# create a graph
n = 10# number of nodes
G = nx.complete_graph(n)
edge_list = list(G.edges())
# compute a "spring" layout that takes node sizes into account
node_size = dict(zip(range(n), np.arange(0, 100, 10))) # dict : node ID -> node size
node_positions = get_fruchterman_reingold_layout(edge_list, node_size=node_size, k=0.01)
nx.draw(G, pos=node_positions, node_size=[300*node_size[node] for node in node_positions]); plt.show()
However, note that when you plot a graph using networkx
, node sizes are given in display coordinates whereas node positions are given in data coordinates. As the display size is determined at runtime, there is no (simple) way of knowing if the two coordinate systems match such that the nodes do not overlap in the plot. Battling with that problem some time ago, I created a fork of networkx
s drawing utilities, which uses data coordinates throughout. You can find the package here.
Post a Comment for "Networkx - Is There A Way To Scale A Position Of Nodes In A Graph According To Node Weight?"