Make A 2d Histogram With Healpix Pixellization Using Healpy
The data are coordinates of objects in the sky, for example as follows: import pylab as plt import numpy as np l = np.random.uniform(-180, 180, 2000) b = np.random.uniform(-90, 90,
Solution 1:
Great question! I've written a short function to convert a catalogue into a HEALPix map of number counts:
from astropy.coordinates import SkyCoord
import healpy as hp
import numpy as np
defcat2hpx(lon, lat, nside, radec=True):
"""
Convert a catalogue to a HEALPix map of number counts per resolution
element.
Parameters
----------
lon, lat : (ndarray, ndarray)
Coordinates of the sources in degree. If radec=True, assume input is in the icrs
coordinate system. Otherwise assume input is glon, glat
nside : int
HEALPix nside of the target map
radec : bool
Switch between R.A./Dec and glon/glat as input coordinate system.
Return
------
hpx_map : ndarray
HEALPix map of the catalogue number counts in Galactic coordinates
"""
npix = hp.nside2npix(nside)
if radec:
eq = SkyCoord(lon, lat, 'icrs', unit='deg')
l, b = eq.galactic.l.value, eq.galactic.b.value
else:
l, b = lon, lat
# conver to theta, phi
theta = np.radians(90. - b)
phi = np.radians(l)
# convert to HEALPix indices
indices = hp.ang2pix(nside, theta, phi)
idx, counts = np.unique(indices, return_counts=True)
# fill the fullsky map
hpx_map = np.zeros(npix, dtype=int)
hpx_map[idx] = counts
return hpx_map
You can then use that to populate the HEALPix map:
l = np.random.uniform(-180, 180, 20000)
b = np.random.uniform(-90, 90, 20000)
hpx_map = hpx.cat2hpx(l, b, nside=32, radec=False)
Here, the nside
determines how fine or coarse your pixel grid is.
hp.mollview(np.log10(hpx_map+1))
Also note that by sampling uniformly in Galactic latitude, you'll prefer data points at the Galactic poles. If you want to avoid that, you can scale that down with a cosine.
hp.orthview(np.log10(hpx_map+1), rot=[0, 90])
hp.graticule(color='white')
Post a Comment for "Make A 2d Histogram With Healpix Pixellization Using Healpy"