Skip to content Skip to sidebar Skip to footer

Matplotlib Boxplot Using Precalculated (summary) Statistics

I need to do a boxplot (in Python and matplotlib) but I do not have the original 'raw' data. What I have are precalculated values for max, min, mean, median and IQR (normal distrib

Solution 1:

Thanks to the comment of @tacaswell I was able to find the required documentation and come up with an example using Matplotlib 1.4.3. However, this example does not automatically scale the figure to the correct size.

import matplotlib.pyplot as plt

item = {}

item["label"] = 'box' # not required
item["mean"] = 5 # not required
item["med"] = 5.5
item["q1"] = 3.5
item["q3"] = 7.5
#item["cilo"] = 5.3 # not required#item["cihi"] = 5.7 # not required
item["whislo"] = 2.0 # required
item["whishi"] = 8.0 # required
item["fliers"] = [] # required if showfliers=True

stats = [item]

fig, axes = plt.subplots(1, 1)
axes.bxp(stats)
axes.set_title('Default')
y_axis = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
y_values = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
plt.yticks(y_axis, y_values)

Relevant links to the documentation:

Solution 2:

In the old versions, you have to manually do it by changing boxplot elements individually:

Mean=[3.4] #mean
IQR=[3.0,3.9] #inter quantile range
CL=[2.0,5.0] #confidence limit
A=np.random.random(50)
D=plt.boxplot(A) # a simple case with just one variable to boxplot
D['medians'][0].set_ydata(Mean)
D['boxes'][0]._xy[[0,1,4], 1]=IQR[0]
D['boxes'][0]._xy[[2,3],1]=IQR[1]
D['whiskers'][0].set_ydata(np.array([IQR[0], CL[0]]))
D['whiskers'][1].set_ydata(np.array([IQR[1], CL[1]]))
D['caps'][0].set_ydata(np.array([CL[0], CL[0]]))
D['caps'][1].set_ydata(np.array([CL[1], CL[1]]))
_=plt.ylim(np.array(CL)+[-0.1*np.ptp(CL), 0.1*np.ptp(CL)]) #reset the limit

enter image description here

Solution 3:

Referring to the answer of @MKroehnert and Boxplot drawer function at https://matplotlib.org/gallery/statistics/bxp.html, the following could be helpful:

import matplotlib.pyplot as plt

stats = [{
    "label": 'A',  # not required"mean":  5,  # not required"med": 5.5,
    "q1": 3.5,
    "q3": 7.5,
    # "cilo": 5.3 # not required# "cihi": 5.7 # not required"whislo": 2.0,  # required"whishi": 8.0,  # required"fliers": []  # required if showfliers=True
    }]

fs = 10# fontsize

fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Boxplot for precalculated statistics', fontsize=fs)
plt.show()

Post a Comment for "Matplotlib Boxplot Using Precalculated (summary) Statistics"